

Aviation Economics & Finance

Professor David Gillen (University of British Columbia)& Professor Tuba Toru-Delibasi (Bahcesehir University)

Istanbul Technical University Air Transportation Management M.Sc. Program

Module 12: 26 November 2015

OUTLINE

- Game Theory
- How Airlines Compete
- Baggage Fees: A Game Theoretic Analysis
- Game Theory and Aircraft Manufacturing
- Game Theory: Airbus vs Boeing

A. GAME THEORY

KEY IDEAS

- Know strategic situation (what is the game?)
- Your competitor is just as smart as you are!
- Think about the response of others
- Nash equilibrium: all participants do the best they can, given the behaviour of competitors.

GAME THEORY

- Set of tools to analyze situations of *strategic interdependence*, i.e. where A's best decision depends on what B does
- A *game* consists of:
 - 1. Players: Which decision makers are involved (e.g. Turkcell and Vodafone or THY and Pegasus)
 - 2. Rules (e.g., simultaneously choose prices or sequantially)
 - 3. Strategies: What are the options available to each? (e.g., price between 10 and 30)
 - 4. Outcomes (payoffs): What is the outcome for each player, depending on which strategies are chosen? (e.g., sales minus production costs)
- What will happen if each player pursues his own interests? November 23-28

HOW TO REPRESENT A GAME

- Extensive form or game-tree form:
 - useful when decisions are sequential.
- Normal form:
 - useful when decisions are simultaneously taken.
 - Important note: the meaning of "simultaneously"
- Order of moves VERY important to outcome

EXAMPLE: NORMAL FORM

Player B Player A	L	С	R
Т	(9,5)	(8,6)	(1,7)
М	(1,3)	(2,5)	(0,6)
В	(2,7)	(3,6)	(3,8)

DOMINANT AND DOMINATED STRATEGIES

- Dominant strategy: payoff is greater than any other strategy regardless of rival's choice.
 - Rule 1: if there is one, choose it and that's the end of it.
- Dominated strategy: payoff is lower than some other strategy regardless of rival's choice.
 - Rule 2: do not choose dominated strategies.
- Check whether there are dominant and/or dominated strategies in the example above. What can we say based on this?

Equilibrium

- Sometimes a game can be "solved" just by looking at dominant and dominated strategies.
- However, there are many games for which this does not work.
- Concept of equilibrium: a rest point of the system.
- **Nash equilibrium:** *Situation such that, given what other players are doing, no player would want to change strategy unilaterally.*

Equilibrium

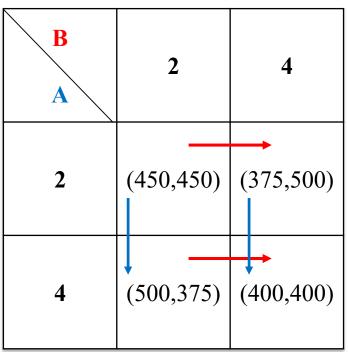
Three equivalent definitions of a (Nash) equilibrium:

An *equilibrium* is a combination of strategies such that

- each player's strategy is a best response to the strategies of the other players
- each player maximizes his payoff, taking as given the others' strategies
- given the strategies of the others, no player has an incentive to deviate

PRISONER'S DILEMMA

- Output setting (number of flights a day) by two airlines
 - Player: Airlines A and B
 - Action: {2, 4} flights in the morning
 - Here is the pay-off matrix


B	2	4
2	(450,450)	(375,500)
4	(500,375)	(400,400)

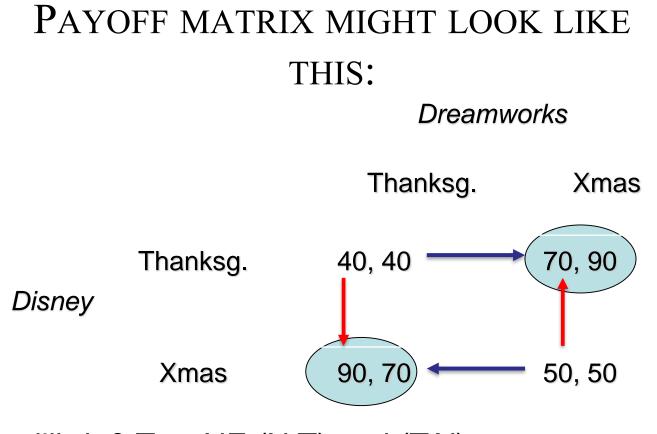
PRISONER'S DILEMMA

- Output setting (number of flights a day) by two airlines
 - Player: Airlines A and B
 - Action: {2, 4} flights in the morning
 - Here is the pay-off matrix

November 23-28

PRISONER'S DILEMMA

- Dominant strategies: high output (4 flights each).
- Equilibrium payoffs are (400,400), worse than those attained by low output, (450,450).
- Conflict between individual incentives and joint incentives.
- Typical of many business situations.

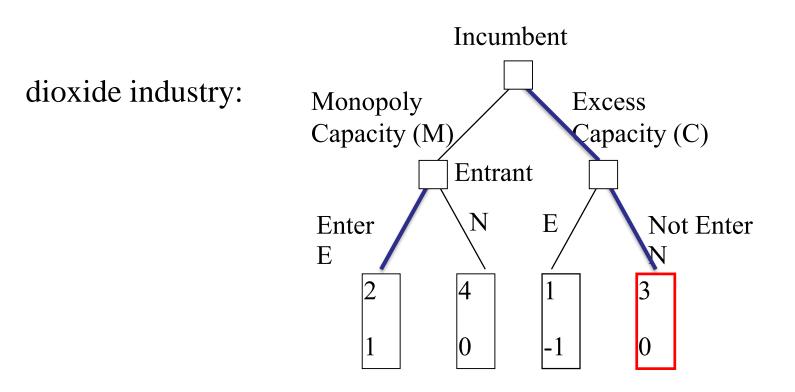


EXAMPLE : DISNEY AND DREAMWORKS

- Disney and Dreamworks release new animated movies
- Choice for each: Thanksgiving or Christmas
- Christmas is larger market, but both want to avoid head-to-head competition

Equilibria? Two NE (X,T) and (T,X)

Problem: coordination may be difficult! Illustrates problems with NE.


DYNAMIC GAMES AND SUBGAME PERFECTION

- In Nash Equilibrium, players take opponents' strategies as given & do not consider the possibility of influencing them
- In games in which a player chooses some actions after observing some of his opponents' actions (dynamic games), the above conjecture is naïve and leads to some absurd Nash equilibria
- Subgame perfection is a refinement that mitigates some of the deficiencies of Nash equilibrium
- An outcome is said to be subgame perfect if it induces a Nash equilibrium in every subgame of the original game.
- Subgame perfect equilibria can be found by backwards induction.

Example: Subgame Perfection

Nash Equilibria: {M, [E,E] } , {C, (E,N) } Subgame Perfect Equilibrium: {C, (E,N) }

DYNAMIC GAMES AND SUBGAME PERFECTION

- A repeated game is simply a game made up of a finite or indefinite repetition of a one-shot game.
- The equilibrium of a repeated game may be very different from the repetition of the equilibrium of the one-shot game. Reasons:
 - Learning about competitors
 - Influencing their learning/expectations
 - achieving a "co-operative solution"
- How repetition can make co-operation an equilibrium: tit-for-tat, grim strategies, etc.

REPEATED GAMES EXAMPLE: CARTEL

- Unique Nash Equilibrium of one shot is (4,4)
- In repeated game: One airline says I will put the number of flights at «cooperative» level as long as my competitor did so if the previous period. If however my competitor deviates from that level, I will punish him.

B	2	4
Α		
2	(450,450) —	→ (375,500)
4	↓ (500,375) —	→ (400,400) ↓

COOPERATION CAN BE SUSTAINED IF:

• Cooperation yields the following payoff:

 $450+450/(1+r)+450/(1+r)^2+\ldots=450(r+1)/r$

• Deviation yields the following payoff

 $500+400/(1+r)+400/(1+r)^2+\ldots=500+400/r$

• Cooperation can be sustained if:

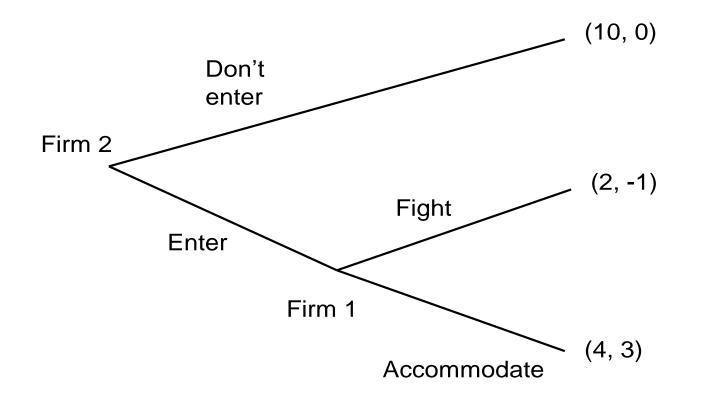
r < (450-400)/(500-450)=1,

that is if the discount rate is less than 100%.

• In general cooperation can be sustained if

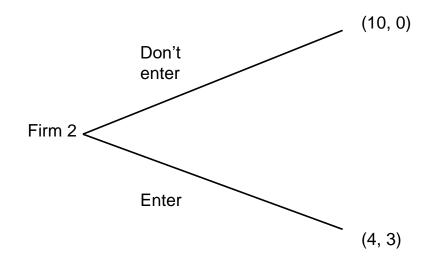
r<(cartel profit – one shot eq. Profit)/(deviation profit - cartel profit).

B. HOW AIRLINES COMPETE


GAMES WITH SEQUENTIAL MOVES

- In many situations, one player moves before the other.
- Example:
 - Firm 1 is a monopolist, making a profit of 10
 - Firm 2 can enter market at a cost of 1, or stay out
 - If firm 2 enters, firm 1 can either
 - accommodate entry: both firms get 4 (not including 2's cost of entry)
 - **fight**: firm 1 gets 2, firm 2 gets 0 (not including 2's cost of entry)
- Here, firm 2 moves *before* firm 1. What will happen?

GAME TREE



LOOK AHEAD AND REASON BACK

Firm 2's best strategy depends on what 1 does. \Rightarrow Look at 1's decision: If 2 enters, ... \Rightarrow 2's simplified tree:

GAME THEORY IN PRACTICE

- Formal games capture essentials of strategic interaction
- In practice,
 - not set up model and solve;
 - rather, gain insight into the strategic interaction
 - What kind of game best describes the situation?
- Put yourself in the shoes of others you interact with! If they don't do what you expect them to,
 - don't assume they're irrational, instead
 - try to understand how they perceive the game

AN EXAMPLE WITH DIFFERENT SCENARIOS

- American and Southwest compete on the route between L.A. and Las Vegas.
- Assumptions:
 - Each airline's marginal cost of a passenger is 60
 - Airlines offer a homogeneous good => customers buy from firm with the lowest price
 - Total market demand given by Q = 240 P, where $P = \min\{p_A, p_S\}$
 - If both firms have same lowest price: demand split equally
 - Each firm has unlimited capacity

1. COLLUSION: FIRMS MAXIMIZE TOTAL PROFITS

• Remember how to compute the monopoly price?

$$\max_p (p-c)Q$$

- Answer: $p_A = p_S = 150$ $\Rightarrow q_A = q_S = 45$ $\Rightarrow \pi_A = \pi_S = 45(150 - 60) = 4050$
- Problem: strong incentive to undercut your competitor!
- At e.g. $p_S = 149$, Southwest gets <u>all</u> of the business - $\pi_S = q_S(p_S - MC) = (240 - 149)(149 - 60) = 91*89 = 8,099 > 4050$
- Cooperation is unstable

2. INDEPENDENT DECISIONS: NASH EQUILIBRIUM

- What will happen if each "player" independently pursues his own interests?
- What is American's profit-maximizing price (= <u>best response</u>) if it expects Southwest to choose p_s ?
 - If $p_S > 60$, choose $p_A = p_S "1$ cent"
 - If $p_s = 60$, choose $p_A \ge 60$
- Define Southwest's best response to p_A similarly
- What is the Nash equilibrium?

THE "BERTRAND TRAP"

- If American charges $P_A > MC$, Southwest will undercut slightly
- if Southwest charges $P_S > MC$, American will undercut slightly
- If American charges a $P_A = MC$, Southwest's best responses is to charge $P_S = MC$ or a higher price; profit is zero either way
- Only equilibrium: both firms charge a price equal to MC = 60. Profits are zero

THE BERTRAND TRAP IN PRACTICE

- Example: Iberia Airlines' purchase of new planes in 2003 – a "Bertrand trap" with one buyer and two sellers
 - Iberia negotiated for months with Boeing and Airbus over an order of 100+ new planes
 - Iberia played Boeing and Airbus off against one another, getting each to make new "final" offers
 - Eventually gave the order to Airbus

BERTRAND TRAP

- Extreme outcome, but it's always possible for firms to fall into the "Bertrand trap" temporarily.
- With fixed costs, firms make losses when P=MC
 - E.g. airline industry
- Also known as "Bertrand paradox":
 - 1 firm = monopoly, 2 firms = perfect competition
 - E.g. supermarket industry, express mail industry

3. Scenario: price competition with DIFFERENTIATED PRODUCTS

- Or "differentiated Bertrand market"
- Demand:

November

- American's demand: $Q_A = 120 p_A + \frac{1}{2} p_S$
- Southwest's demand: $Q_S = 120 p_S + \frac{1}{2} p_A$
- In what sense differentiated?
- American's best response to Southwest's price?

 \Rightarrow Find price that maximizes American's profit:

$$\pi_{\rm A} = (p_{\rm A} - 60)(120 - p_{\rm A} + \frac{1}{2} p_{\rm S})$$

 \Rightarrow Take derivative with respect to p_A , set to zero:

$$120 - p_A + \frac{1}{2} p_S - (p_A - 60) = 180 + \frac{1}{2} p_S - 2 p_A = 0$$
23-28

PRICE EQUILIBRIUM

 \Rightarrow American's best response: $p_A = 90 + \frac{1}{4} p_S$

 \Rightarrow Similarly, Southwest's best response is $p_S = 90 + \frac{1}{4} p_A$

• Price equilibrium = solution to those two equations

 $p_{A} = p_{S} = 120$

- Check: why no incentive to undercut at these prices?
- Each firm's profit is

 $(120 - 60)(120 - 120 + \frac{1}{2} * 120) = 60 * 60 = 3,600$

- Product differentiation reduces strength of price competition!
- What would happen if both firms invest in advertising to increase customer loyalty?

4. Scenario: price competition with capacity constraints

• Go back to initial scenario with homogeneous goods; demand is

Q = 240 - p

- Now assume each airline has only one plane with capacity of 60
- If $p_A = p_S = 120$, then Q = 120, and both firms' planes are exactly filled; each gets profit of (120 - 60)60 = 3,600
- Would either firm want to cut price?
- Would either firm want to *raise* price?
 - E.g. if $p_A = 121$, then assume 60 customers fly Southwest first, so American's demand is (240 60) 121 = 59
 - Profit = (121 60)59 = 3,599 < 3,600
- $p_A = p_S = 120$ is a Nash equilibrium!

CONCLUSION SO FAR

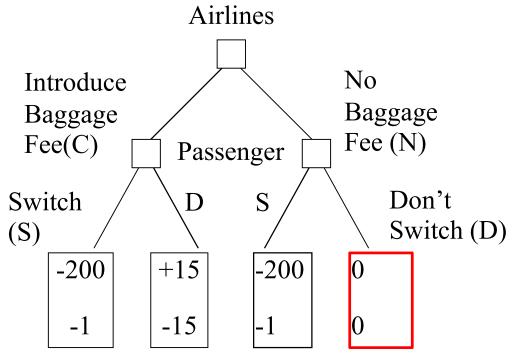
- Price competition (rivalry) most intense when products are homogeneous and firms have excess capacity
- Factors that reduce rivalry:
 - 1. Product differentiation
 - Similar: switching costs
 - 2. Capacity constraints
 - 3. Firms' ability to collude on prices

C. BAGGAGE FEES: A GAME THEORETIC ANALYSIS

AIRLINE INDUSTRY

- Characteristics
 - High Fixed Cost
 - Huge Fuel costs
 - Debt Intensive
- Need for Additional Source of Revenue

BAGGAGE FEE REVENUE OF AIRLINES 2009-2008


							Percent
		2nd	3rd	4th		2nd	Change 2Q
2Q 2009		Quarter	Quarter	Quarter	1st Quarter	Quarter	2008-2Q
Rank	Airline	2008	2008	2008	2009	2009	2009 (%)
1	American	37,101	94,075	113,856	108,117	118,442	219.2
2	Delta	42,861	47,489	60,542	102,838	118,356	176.1
3	US Airways	17,917	67,928	93,759	94,227	104,138	481.2
4	United	19,721	42,283	58,771	59,102	67,412	241.8
5	Northwest	15,685	32,695	63,578	59,787	67,186	328.3
6	Continental	16,361	21,180	49,287	55,616	63,157	286.0
7	AirTran	6,099	7,867	12,749	30,881	40,535	564.6
8	Spirit	N/A	N/A	N/A	N/A	16,178	N/A
9	Frontier	1,245	2,928	10,018	12,456	13,463	981.4
10	JetBlue	7,275	12,119	11,504	12,603	12,353	69.8
	Industry Total	178,214	350,061	498,568	566,328	669,572	275.7

SEQUENTIAL (LOOK FORWARD REASON-BACK ANALYSIS)

dioxide industry:

TWO-STAGE GAME: STAGE 1

Rassenger Airline	Buys from AA	Switches to another airline
Include baggage fee in fare	(+15,-15)	(-200,-1)
Exclude baggage fee from fare	(0,0)	(-200,-1)

TWO-STAGE GAME: STAGE 2

Rassenger Airline	Travel		Don't Fly	
Charge	(+15,-15)	(+100,-100)	(+200,-200)	
Don't Charge	(0,0)	(+100,-100)	(+200,-200)	

D. GAME THEORY AND AIRCRAFT MANUFACTURING

STRUCTURE OF THE SINGLE AISLE AIRCRAFT MANUFACTURER'S GAMES

E. GAME THEORY: AIRBUS VS BOEING

AIRBUS AND BOEING GAME

- Boeing and Airbus have to decide whether to invest in the development of a Super Jumbo for long distance travel;
- if they both develop successfully the new plane, their profits will drop by 50 millions a year;
- if only one develop the Super Jumbo, it will make 80 millions a year in additional profits, whereas the profits of the other firm will drop by 30 millions a year;
- if no firm develops the plane, nothing changes.

MATRIX REPRESENTATION OF AIRBUS-BOEING GAME

Airbus Boeing	Develop	Do not develop
Develop	(-50,-50)	(80,-30)
Do not develop	(-30,80)	(0,0)

DEVELOPPER'S DILEMMA

- There are no dominant strategies for both
- If only one of the players decides to develop, he will reap superior profits from the unchallenged future market dominance.
- If both players go ahead, the product is likely to generate losses for both players.
- If neither goes ahead, a profitable market remains untapped.

SUPERJUMBO GAME OF AIRBUS-BOEING

Airbus Boeing	Develop	Do not develop	
Develop	(high risk,risk) Cooperatively Boeing 400+ monopoly market too small?)	(risk,loss) Market too small, dominance Boeing	
Do not develop	(loss,risk) Dominance Airbus market too small?	(profit,loss) 400+ monopoly unchallenged	

PRICES, PROFITS AND THE NUMBER OF FIRMS

- Suppose N firms instead of two. Can generalize previous results:
 - If firms can perfectly collude: monopoly price, profits fall with N
 - With homogeneous goods: monopoly if N = 1, but price = MC and zero profits if $N \ge 2$
 - With product differentiation, prices and profits decrease gradually with N

TWO MAIN DETERMINANTS OF PROFITABILITY

- 1. The industry
 - How profitable is the industry in general?
- 2. The firm and its position in the industry
 - Does the firm we're focusing on have a competitive advantage or disadvantage in this industry?

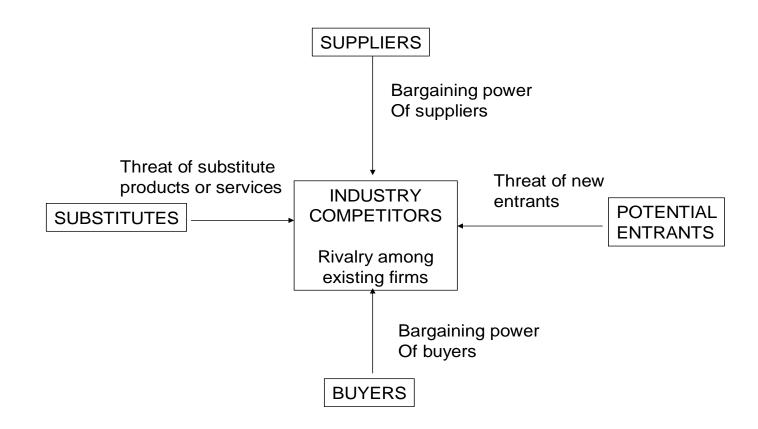
FIRST, DEFINE THE RELEVANT MARKET/INDUSTRY

- Seems easy at the surface, e.g. airline or auto industry...
- ...but can be tricky in practice:
 - Airlines: all of U.S., or e.g. L.A.-Vegas?
 - Automobiles: all cars, or minivans vs. SUVs vs. Luxury sedans
 - Particularly tricky: geographical boundaries
- In the end, a question of
 - cross-price elasticities of demand, and/or
 - substitutability on supply side

FIRST, DEFINE THE RELEVANT MARKET/INDUSTRY

- No single "right" definition, just pick what seems most appropriate
- Once market is defined:
 - Competitors of firm A = firms in the same industry
 - Substitutes for A = goods produced outside industry

MAP THE KEY RELATIONSHIPS:


PORTER'S FIVE FORCES (1980)

- Questions addressed:
 - What's going on in the industry in general?
 - How "attractive" is the industry?
 - How much value created can the firms in the industry appropriate as profits?
 - And how much goes to suppliers and buyers instead?
 - Identify "forces" that reduce profitability
- Focus on average firm, not on any particular one
- Snapshot of industry at particular point in time

FIVE FORCES

THREE STEPS OF CONDUCTING A USEFUL 5-FORCES ANALYSIS

- 1. Identify the players: who are the relevant competitors, suppliers, buyers, substitutes, entrants?
- How much are industry profits threatened by these forces?
 E.g., is buyers' bargaining power high or low?
- 3. What are the underlying economic reasons?
 - Need to get to this level for 5-forces analysis to be useful for strategic decision making

INTERNAL RIVALRY

- To what extent are profits dissipated by firms' competition for buyers/suppliers?
- We just saw what that depends on:
 - 1. Market structure
 - 2. Strength of price competition
- Also: non-price competition
 - advertising/marketing, R&D
 - \Rightarrow higher fixed costs
 - \Rightarrow pressure to gain market share

SUBSTITUTES

- Good Y is a substitute for X if having Y decreases customers' demand (lowers the willingness to pay) for X.
- Key question: To what extent does competition from substitute products erode the profitability of a typical firm in the industry?
- Substitutes can be completely different products:
 - Eyeglasses and laser surgery
 - Airlines and video-conferencing
 - Express mail and electronic file transfer
- Main point: don't forget to think about these!

BUYERS

- Key question: To what extent do purchase prices in this market differ from those that would prevail in a perfectly competitive buyer's market?
- Buyer power tends to be higher if:
 - Large share of buyers' cost
 - Large share of sales of firms in industry
 - Industry's product is not critical input for buyers, easy to substitute
 - Little rivalry in buyer industry
 - Buyers can credibly threaten to backward-integrate.

SUPPLIERS

- Key question: To what extent do input prices deviate from those that would prevail in perfectly competitive input markets?
- Supplier power tends to be higher if:
 - Input is a critical component of production, difficult to substitute
 - Small share of costs of firms in industry
 - Small volumes relative to other customers of the supplier
 - Little rivalry in supplier industry
 - Suppliers can credibly threaten to forward-integrate.

ENTRY

- Average profits can't be high if it's easy to enter
- But distinguish barriers to entry from attractiveness of market, focus on barriers here.
- Two kinds of barriers to entry:
 - 1. Impediments to imitation: reasons why entrants cannot imitate incumbents, e.g. patents
 - 2. First-mover advantages: reasons why it is not *economical* for entrants to imitate incumbents
 - Is there enough business to pick up for a late mover to recoup costs of entry and make a profit?

WHERE RELEVANT, A 6TH (POSITIVE) FORCE: COMPLEMENTS

- Good Y is a complement for X if having (a higher quality version of) Y increases customers' demand for X.
- Examples:
 - Intel and Microsoft
 - Desktop printers and digital cameras
 - Video game consoles (e.g. Nintendo) and video games
 - Airlines what????
- Want to keep substitutes (competitors) out, want to bring complement(or)s in!

EXAMPLES FOR LAST POINT:

- 1. Anecdotal: some industries are concentrated but apparently very competitive, e.g. supermarkets, express mail
- 2. Deregulation in industries often followed by wave of mergers, e.g. U.S. airline industry
- 3. Case study:

END OF MODULE 12